245 research outputs found

    Social media research: influencing the influencers

    Get PDF
    One of the central concepts in marketing theory is the idea that some individuals are more influential than others, and that these influencers play a central role in driving adoption of new products and services. From a customer service perspective, when these influencers are dissatisfied, they are able to drive disproportionally large numbers of customers, and potential customers, away. This report includes two pieces of research to help organisations engage with, and manage, online influencers. The first investigates the role of hyperinfluencers in online rate-and-review sites. Whilst existing research suggests that most individuals who post online are motivated by feelings of altruism or reciprocity this study found that the hyperinfluencers viewed reviewing products as a form of entertainment, creating ‘game’ elements out of the review process. The second piece of research examined the role of influence on social media sites, specifically Facebook, and questions whether it is possible to build effective brand communities on Facebook. The effectiveness of Facebook as a tool for building relationships with customers has been questioned, with some arguing that Facebook has only a limited value for marketers as a platform for promotions and offers. The research indicates that effective brand communities can be built on Facebook, but many brands are currently adopting social media community strategies that actually destroy brand value. For both pieces of research recommendations are provided for best practice in maximising the beneficial effect of online influencers, and minimising the potential for damaging brands online

    Has the black hole in XTE J1118+480 experienced an asymmetric natal kick?

    Full text link
    We explore the origin of the Galactic high latitude black hole X-ray binary XTE J1118+480, and in particular its birth location and the magnitude of the kick received by the black hole upon formation in the supernova explosion. We constrain the age of the companion to the black hole using stellar evolution calculations between 2 Gyr and 5 Gyr, making an origin in a globular cluster unlikely. We therefore argue that the system was born in the Galactic disk and the supernova propelled it in its current high latitude orbit. Given the current estimates on its distance, proper motion and radial velocity, we back-trace the orbit of XTE J1118+480 in the Galactic potential to infer the peculiar velocity of the system at different disk crossings over the last 5 Gyr. Taking into account the uncertainties on the velocity components, we infer an average peculiar velocity of 183 \pm 31 km/s. The maximum velocity which the binary can acquire by symmetric supernova mass loss is about 100 km/s, which is 2.7 sigma away from the mean of the peculiar velocity distribution. We therefore argue that an additional asymmetric kick velocity is required. By considering the orientation of the system relative to the plane of the sky, we derive a 95% probability for a non null component of the kick perpendicular to the orbital plane of the binary. The distribution of perpendicular velocities is skewed to lower velocities with an average of 93^{+55}_{-60} km/s.Comment: 6 pages, 6 figures, replaced with revised version, accepted for publication in the Astrophysical Journa

    The Role of Patient-Specific Morphological Features of the Left Atrial Appendage on the Thromboembolic Risk Under Atrial Fibrillation

    Get PDF
    Background: A large majority of thrombi causing ischemic complications under atrial fibrillation (AF) originate in the left atrial appendage (LAA), an anatomical structure departing from the left atrium, characterized by a large morphological variability between individuals. This work analyses the hemodynamics simulated for different patient-specific models of LAA by means of computational fluid–structure interaction studies, modeling the effect of the changes in contractility and shape resulting from AF. Methods: Three operating conditions were analyzed: sinus rhythm, acute atrial fibrillation, and chronic atrial fibrillation. These were simulated on four patient-specific LAA morphologies, each associated with one of the main morphological variants identified from the common classification: chicken wing, cactus, windsock, and cauliflower. Active contractility of the wall muscle was calibrated on the basis of clinical evaluations of the filling and emptying volumes, and boundary conditions were imposed on the fluid to replicate physiological and pathological atrial pressures, typical of the various operating conditions. Results: The LAA volume and shear strain rates were analyzed over time and space for the different models. Globally, under AF conditions, all models were well aligned in terms of shear strain rate values and predicted levels of risk. Regions of low shear rate, typically associated with a higher risk of a clot, appeared to be promoted by sudden bends and focused at the trabecule and the lobes. These become substantially more pronounced and extended with AF, especially under acute conditions. Conclusion: This work clarifies the role of active and passive contraction on the healthy hemodynamics in the LAA, analyzing the hemodynamic effect of AF that promotes clot formation. The study indicates that local LAA topological features are more directly associated with a thromboembolic risk than the global shape of the appendage, suggesting that more effective classification criteria should be identified

    Large, Wafer-Thin Optical Apertures Leveraging Photonic Integrated Circuits to Replace Telescopes for Communications

    Get PDF
    To aid in driving down the size, weight, and power (SWaP) of space-based optical communications terminals, we present a large-aperture telescope-replacement technology that reshapes a beam from a single-mode fiber to ~5 cm and larger apertures on a silicon wafer by using photonic integrated circuit (PIC) components. We achieve multi-centimeter apertures by sacrificing wide-angle steering in favor of good beam quality and manageable controls. Light from a single-mode fiber is coupled to a silicon chip consisting of low-loss silicon nitride waveguides for signal distribution to large phase-controlled emitters. Our demonstrations of beam phasing across a 1.8-cm-diameter, 16-emitter phased array show excellent agreement with simulations. We have designed and simulated a 4.7 cm, 64-emitter array and have begun fabrication as of 2023. This architecture removes the need for beam expansion optics, free-space propagation for beam expansion, and the support structure and housing used in traditional telescope assemblies. Its low size and weight make it compatible with current and future beam steering mechanisms, and its reduced loading provides added potential for size and weight reductions in those subsystems. We believe the architecture can eventually be expanded to larger apertures of 10 cm or more without significantly increasing thickness

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of √s=7 TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≄6 to ≄9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‟ , W+bb‟ and W+cc‟ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓΜ , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of tt‟t\overline{t}, W+bb‟W+b\overline{b} and W+cc‟W+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays W→ℓΜW\rightarrow\ell\nu, where ℓ\ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in pp collisions at s√= 8 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter pair production in association with a W or Z boson in pp collisions representing 20.3  fb−1 of integrated luminosity at s√=8  TeV using data recorded with the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet with the jet mass consistent with a W or Z boson, and with large missing transverse momentum are analyzed. The data are consistent with the standard model expectations. Limits are set on the mass scale in effective field theories that describe the interaction of dark matter and standard model particles, and on the cross section of Higgs production and decay to invisible particles. In addition, cross section limits on the anomalous production of W or Z bosons with large missing transverse momentum are set in two fiducial regions.We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; U.S. DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (U.S.), and in the Tier-2 facilities worldwide
    • 

    corecore